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Figure 1: Two scenes rendered with our method. The local light field for any fragment is available as a precomputed set of 16 Spherical
Gaussians in a light-field texture (512×512, 56MB). A similar texture contains the attenuation factor for a preconvolved environment map.
The combined result is images with full global illumination for glossy surfaces rendered in just over a millisecond at 1080p resolution.

Abstract
We describe a method to use Spherical Gaussians with free directions and arbitrary sharpness and amplitude to approximate
the precomputed local light field for any point on a surface in a scene. This allows for a high-quality reconstruction of these
light fields in a manner that can be used to render the surfaces with precomputed global illumination in real-time with very
low cost both in memory and performance. We also extend this concept to represent the illumination-weighted environment
visibility, allowing for high-quality reflections of the distant environment with both surface-material properties and visibility
taken into account. We treat obtaining the Spherical Gaussians as an optimization problem for which we train a Convolutional
Neural Network to produce appropriate values for each of the Spherical Gaussians’ parameters. We define this CNN in such a
way that the produced parameters can be interpolated between adjacent local light fields while keeping the illumination in the
intermediate points coherent.

CCS Concepts
• Computing methodologies → Rendering; Ray tracing;

1. Introduction

To achieve realistic computer generated images, the indirect il-
lumination of each visible surface point must be accounted for.
The current de-facto method for rendering such images is path
tracing, where the Light Transport Equation [Kaj86] is numeri-
cally estimated. In real-time applications, even on high-end GPUs
with dedicated ray-tracing hardware, only a few samples per pixel
and frame are achievable. Recently, several de-noising techniques

have been developed that reuse samples from adjacent pixels and
frames [CKS*17; MMBJ17]. These techniques show great promise
and allow for rendering scenes with fully dynamic lighting and ma-
terials. However, they are still much too expensive on mid or low-
end hardware.

Therefore, in applications where lighting, geometry, and materi-
als can be considered static, it is often preferable to rely on precom-
puting the indirect illumination in the scene and using ray tracing
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Free directionsFixed directions

Figure 2: Left: Using Spherical Gaussians with fixed direc-
tions [Pet16] (or Spherical Harmonics [RH01]) the incoming light
is projected onto the directions being considered. High frequency
changes in the illumination cannot be captured, and there will be
visible aliasing as we interpolate between two receiving points.
Right: With free directions a much higher quality can be obtained
and interpolation can be free from aliasing.

only for specific effects. When illumination can be pre-computed,
the remaining questions are how to store a sufficiently dense sam-
pling within a fixed memory budget, how to reconstruct the lo-
cal light field, and how to convolve it with the Bidirectional Re-
flectance Distribution Function (BRDF) to get the reflected light.

Common choices of Spherical Radial Basis Functions (SRBFs)
to store the light field are Spherical Harmonics (SHs) [RH01] and
Spherical Gaussians (SGs) [TS06]. With SHs, a few coefficients
are stored that describe a set of orthogonal functions on the sphere
that can be combined to approximate the light field. With SGs a
sum of gaussian lobes are used instead. Wang et al. [WRG*09]
describe how the SVBRDF (Spatially Varying Bidirectional Re-
flectance Distribution Function) can be described in this form for
each vertex, allowing for environment lighting in real time. SGs
were used to encode light-field textures in the videogame The Or-
der 1886, as described by Pettineo and Neubelt [Pet16]. The au-
thors show that, with 12 SGs with fixed direction and sharpness
(i.e. 36 floats), they can better represent the original light field than
a 3-band SH representation (24 floats). Both methods benefit from
expressing the BRDF in the same representation as the light fields,
allowing for fast and efficient convolution with the incoming illu-
mination.

Figure 2 illustrates a problem with using either SHs or SGs with
fixed directions for approximating the incident illumination. Firstly,
since the direction of the basis functions are fixed, the lobes can not
be moved to where they are most useful. A much better reconstruc-
tion of the local light field can be obtained if lobes are concentrated
where they are most needed. Secondly, as a source of illumination
moves between two of these directions, the reconstructed illumina-
tion can only respond by modifying the amplitude, causing clearly
visible aliasing in the reflections.

However, allowing for non-fixed directions is far from trivial.
Optimizing only the amplitude can be solved with a linear least
square solver. With arbitrary directions and sharpness the problem
is much more complex. Additionally, it is imperative that the pa-

rameters of the SGs are interpolatable between, e.g., nearby light
probes or texels in a light map.

The main contribution of this paper is an alternative approach to
solving this optimization problem. Instead of optimizing the SG pa-
rameters directly, we train a Convolutional Neural Network (CNN)
to generate them. Figure 3 shows an overview of our system. We
start with a scene with a unique UV parametrization and a precom-
puted irradiance texture. The goal is to create another texture, the
light-field texture, where every texel contains the SG parameters
(axis, sharpness and amplitude) required to recreate the local light
field. We first pathtrace the local light field from every texel’s posi-
tion and store it as a 2D light-field image to disk. Next, we train the
CNN using these images as input to generate a set of parameters
for a number of SGs. The sum of SGs are evaluated to predict the
light-field image, and the error is backpropagated through the net-
work. When the training has converged, the output SG parameters
for each texel are saved as the light-field texture. A benefit of this
approach is that, similarly to how an autoencoder works, the net-
work will produce similar SG parameters for adjacent input light
field images, and so a lookup in the light-field texture will produce
plausible results when interpolated.

Once the light-field texture is created, it can be used to render
the scene with indirect illumination in real time. A fragment shader
fetches an interpolated set of gaussian parameters and very effi-
ciently convolves this incident illumination with the BRDF to esti-
mate the reflected radiance towards the camera.

As a second contribution we suggest an algorithm for allowing
high-resolution glossy reflections from environment maps while
taking visibility into account. A common approximation in real-
time applications is to preconvolve the environment map with the
Normal Distribution Function (NDF) and replace the expensive
convolution with a single 3D texture lookup at runtime. The re-
maining terms of the light transport equation are moved outside of
the integral and evaluated only for the perfect specular direction.
The error of this estimation will be worse the rougher the material
is, but in practice it works well for unoccluded reflection. As illus-
trated in Figure 4, using a preconvolved environment map is prob-
lematic when visibility is to be taken into account. Even if some
representation of the local visibility is available, the convolution
with the environment map must happen at run-time for correct re-
sults.

Inspired by the recent work by Heitz et al. [HHM18], we in-
stead suggest rendering, for each texel and all directions, the pre-
convolved environment both with and without visibility. By taking
their ratio we get a spherical function (represented by a 2D im-
age) which we call the illumination-weighted environment visibil-
ity. These images are then compressed to spherical gaussians, as
described above, and can be easily evaluated for any direction in
the shader. Multiplying this result by the pre-convolved environ-
ment map gives us a high-quality estimation of the actual reflected
light.

Together, these novel contributions allow us to render static,
complex, scenes with glossy reflections from any viewpoint using
high-resolution precomputed illumination and environment visibil-
ity stored as a set of a few spherical gaussians per texel. As shown
in Figure 1, with 16 SGs per texel (56MB for a 512x512 light-field
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Figure 3: Training a network to estimate spherical gaussian parameters. a) Given a scene and a UV unwrapping, the local light field (envi-
ronment map) is pathtraced for every texel in the lightmap and stored as an image. b) These images are then passed through a Convolutional
Neural Network where each layer consists of a convolution, max pooling and a ReLU activation. The output of final layer is passed through
a fully connected layer to produce the parameters of each SG. c) Finally, the predicted local light field is calculated as the sum of these
gaussians, and the error is backpropagated through the network. When the network is fully trained, the local light fields of each texel are run
through the network again, and the predicted parameters are stored in the corresponding texel of a light-field texture.

Figure 4: Evaluating visibility only in the center of the BRDF lobe,
to attenuate the preconvolved incoming radiance in that direction,
can lead to significant light-leaking, as in this example where the
surface should not reflect any sunlight.

texture with 16-bit floats), we achieve smooth results, comparable
to a pathtraced reference, in just over a millisecond on an RTX 2080
graphics card.

2. Previous Work

Image-Based Lighting (IBL). In 1976, Blinn and Newell [BN76]
presented their work on environment maps, i.e. images represent-
ing the incoming radiance for a single point from all directions.
For distant illumination, this technique is still in use today, usu-
ally extended by preconvolving the incoming radiance with the
BRDF to allow for plausible glossy reflections [MS16]. It is com-
mon to render several environment maps at several points in the
scene, which can then be blended together in an attempt to recre-
ate the light field at an arbitrary point [SZ12]. Unless these light
probes are extremely densely placed (requiring extensive amounts
of memory), such methods will suffer from visibility errors. We re-
fer the reader to a tutorial and survey of image-based lighting by
Debevec [Deb06] for more details on image-based lighting.

Irradiance and Precomputed Radiance Transfer. For diffuse
or very rough materials, light probes can be compactly de-
scribed using Spherical Harmonics rather than a full environment
map [RH01]. In Precomputed Radiance Transfer [SKS02], the
transfer function, i.e., how the incoming radiance is transferred to
a specific direction is precomputed. This allows for relighting of an
object without recomputing the radiance transfer. This method has
been extended to allow dynamic objects [SLS05] and to represent
soft shadows [RWS*06].

Spherical Harmonics require many coefficients not to exhibit
ringing artifacts when used to represent high-frequency functions,
so they are limited to materials with high roughness. Tsai and
Shih [TS06] represent both the transfer functions and the light
sources with Spherical Gaussians, which allows for high-frequency
lighting environments, but this method cannot easily handle spa-
tially varying BRDFs and detailed reflections for rough materials
are difficult to reconstruct. Green et al. [GKMD06] also compress
the transfer function using Gaussians. Wang et al. [WRG*09] in-
stead represent the BRDF as SGs and represent environment vis-
ibility as a spherical signed distance function. For environment
lights they sample a preconvolved environment map, which will
cause artifacts for rough lobes in certain lighting conditions (see
Figure 4). To allow for dynamic scenes, Iwasaki et al. [IFDN12]
approximate the geometry using spheres to create a visibility es-
timation which they can efficiently convolve with the lighting and
BRDF.

Xu et al. introduced Anisotropic Spherical Gaussians, which are
shown to produce better reconstructions of some functions with
much fewer lobes [XSD*13]. While we do use anisotropic gaus-
sians to represent the BRDF lobe in our real-time evaluation (see
Section 6), we use a sum of isotropic gaussians to represent the
local light field to avoid the extra amount of memory required.

None of these methods attempt to capture the local light field,
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and thus they are not applicable to interreflections and global illu-
mination rendering. In contrast, we suggest both a method for dis-
tant environment lighting with improved quality for rough BRDF
lobes, and a method in which the precomputed local light field is
reconstructed for every texel, allowing for very fast indirect illumi-
nation from any surface in the scene, as long as the scene, lighting,
and materials can be considered static.

Xu et al. [XCM*14] derive an expression for a SG representing
the reflected radiance from one triangle and of a node in a hierar-
chical representation of the scene, allowing for diffuse and glossy
one-bounce interreflections at interactive frame-rates. In the work
by Meder and Bruderlin [MB18], a hierarchy of Virtual Spheri-
cal Gaussian Lights (VSGLs) is generated by mip-mapping a Re-
flective Shadow Map. When shading, a predetermined number of
VSGLs are importance sampled from the hierarchy and convolved
with the BRDF, expressed as a SG. This method greatly improves
the quality of reflections compared to standard Virtual Point Light
sampling.

In several of these works [TS06; WRG*09; XSD*13] a method
is required to fit a set of Spherical Gaussians to an environment
map, which is achieved in an iterative process by first separately
solving for directions and sharpness using the L-BFGS-B algo-
rithm [ZBLN97] and then projecting the amplitude using a least-
squares solver. In the work by Vorba et al. [VKŠ*14], the sphere of
incoming radiance is projected to a 2D plane and a standard Gaus-
sian Mixture Model (GMM) is used, rather than Spherical Gaus-
sians. In their work on Normal Map Filtering [HSRG07], Han et al.
instead use the von Mises-Fisher distribution to represent the Nor-
mal Distribution Function in filtered mipmap levels. Similarly to
Green et al. [GKMD06], they add a term to the likelihood function
that enforces coherency in directions for neighboring lobes, to al-
low for interpolation. All three use the Expectation-Maximization
(EM) algorithm to efficiently estimate the gaussian parameters.

Vorba et al. [VKŠ*14] use bi-variate Gaussians to represent in-
coming radiance but in an off-line rendering context. They maintain
a spatial cache of directional gaussian distributions to approximate
a PDF for the incoming radiance. The renderer then uses only the
closest cached distribution to importance sample new directions, so
no interpolation between distributions is required.

Real-Time Indirect Illumination. The body of work on real-time
indirect illumination is vast and spans decades. We refer the reader
to the excellent STAR report by Ritschel et al. [RDGK12] for a
detailed survey, and will only cover the most relevant works here.

Much recent work relies on rendering a very noisy image using
real-time path tracing and denoising the results, e.g. by factoring
the LTE and using carefully chosen filters [MMBJ17], or training
a recursive autoencoder [CKS*17]. These methods can work very
well but are still quite costly even on high-end hardware.

Faster, and more approximate, methods include Voxel Cone
Tracing [CNS*11] where a low-resolution voxel representation of
the scene is updated and ray-traced every frame, Photon Splat-
ting approaches [ML09; MSK*16], and Light Propagation Vol-
umes [KD10]. Despite often being able to produce very good re-
sults, these algorithms are rarely used in the industry due to their
relatively high cost. More often, a combination of sparse precom-

puted illumination and very approximate screen-space methods,
e.g., screen-space reflections [MM14] and screen space ambient oc-
clusion [Mit07], are used. The work by McGuire et al. [MMNL17]
falls somewhere between; precomputed environment maps, includ-
ing normal and distance information, are calculated for sparsely
placed light probes, which are then ray marched for each pixel to
estimate the color of the reflecting surface.

Neural network approaches. Ren et al. [RWG*13] divide the
scene into small sub-spaces and store a Radiance Regression Func-
tion (a small NN) in each, which approximates the outgoing radi-
ance given the viewing direction, surface position, and surface nor-
mal. [GvSS17] shows that an image consisting of separate entities
can be disentangled into one image per K objects by learning a sep-
arate representation vector for each object and a function (a neural
network) that allows them to associate each pixel with a specific
object. Somewhat similarly, in our method, a CNN learns to map
features found in the input light-field images to specific SG param-
eters.

In the work of Hermosilla et al. [HMRR18], a sparsely sampled
point cloud of the scene is processed by a Convolutional Neural
Network to obtain abstract features. A second network is trained to
process these features, along with the point cloud, to obtain, e.g.,
AO values for each point. A high-quality shaded image can then be
produced, at interactive framerates, by feeding the network the visi-
ble points of a 2D image (the GBuffer). The method produces plau-
sible values for points it has not previously seen. View-dependent
global illumination is not handled by this method.

Our method is somewhat related to the problem of inverse graph-
ics techniques, where the goal is to find scene parameters given
observed images. Maximov et al. [MRF18] train a network that
describes a Deep Appearance Map (DAM) which, given a normal
and view direction, outputs the correct radiance for a specific mate-
rial. They then train a separate network that, given an input photo-
graph, can produce a new DAM very efficiently. Several recent pa-
pers have made use of a differentiable renderer [LADL18; LHJ19]
which can compute derivatives of arbitrary scene parameters from
the rendered image to find optimal values. In the work by Chen
et al. [CGL*19], a target image is fed through a CNN to predict,
e.g., vertex positions which are in turn processed by the differen-
tiable renderer to produce an image. Through back-propagation,
the CNN can be updated to improve the estimated vertex positions.
Similarly, Wang et al. [WRM17] train a network to reproduce the
outgoing radiance given a material, light and view direction. Since
it is differentiable, they can then optimize these parameters for a
target photograph, allowing for, e.g., inserting new objects in the
image with plausible materials and lighting.

Interpolating between environment maps can arguably have sim-
ilarities to constructing images for novel view points. There, Deep
Neural Network (DNN) approaches have increasingly gained at-
traction [FNPS16; ZTF*18; KWR16; SWS*17; FBD*19]. How-
ever, these methods do not directly lend themselves for efficiently
compressed light-field representations and, when applicable, real-
time evaluation is much more expensive than our proposed method.
In these methods, neural networks are used to predict the result,
which is costly even with hardware acceleration. We only use a
network to compute the SG parameters, which are then trivially
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interpolated at run-time. DNNs have also been used for other re-
lated tasks, such as real-time light field reconstruction [CWZ*18;
MKU13], approximate global illumination [TF17], and BRDF es-
timation from photos [AAL16], to mention a few.

3. Light-field Images

We store the gaussian parameters that approximate the local light
field for each texel in a light-field texture, so all surfaces in the
scene need a unique UV mapping. We follow a method similar to
Rakhteenko’s [Rak18] to obtain the positions and normals for each
texel in the light-field texture while avoiding artifacts at seams and
at points that lie inside other objects. Using these positions and
normals, we compute a light-field image, a 2D image with the inci-
dent radiance projected from the sphere. For this we use a GPU-
accelerated path tracer implemented using Optix [PBD*10]. We
found an environment map size of 128× 128 to be sufficient for
the fidelity we can reconstruct and have used that size throughout
the project. These light-field images are saved to disk in an uncom-
pressed 16 bit float format, and sum up to tens of GBs for each of
our test scenes.

4. Optimizing the SG parameters

A single spherical gaussian has the form: G(v;u,λ,µ) = µeλ(v·u−1),
where u is the axis of the gaussian lobe, µ is the amplitude, and λ

is the sharpness. For each texel, t, we want to approximate each
channel, c, of each pixel, i, in each light-field image, Tt(v), as a
sum of N spherical gaussians:

Pic =
N

∑
j

G(vi;u j,λ j,µ jc) =
N

∑
j

µ jceλ j(vi·u j−1), (1)

where vi is a direction corresponding to pixel i and depends on
the spherical projection used. Therefore, the problem is to optimize
all SG parameters such that the L2 loss is minimized:

all texels

∑
t

all pixels

∑
i

all channels

∑
c

(
N

∑
j

µtc je
λt j(vi·utj−1)−Ttc(vi)

)2

. (2)

The number of parameters to optimize scales with the number
of texels in the light-field texture. Even with a very small light-
field texture of 128× 128 texels and 16 SGs, the number of free
parameters to optimize is 1.8M. Additionally, if the gaussians for
all texels in the light-field texture are optimized independently, the
converged parameters can differ very much between neighboring
texels in the light-field texture, resulting in severe visual artifacts
when interpolated.

To enforce locally coherent sets of SGs to solve this, previous
work has suggested explicitly aligning the axis of adjacent SGs
during the optimization task [GKMD06; HSRG07]. We show in
Section 7 that, for our problem, this slows convergence and either
blurs the resulting reflections, or leaves undesirable artifacts along
lines where the optimizer could not resolve conflicting axes.

Instead, we propose a novel formulation of the problem. Rather

than trying to optimize the SG parameters directly, we train a Con-
volutional Neural Network to produce good SG parameters given
an input light-field image (see Figure 3). The motivation for our
approach is twofold: First, by making the parameters a function of
the input image, we encourage similar images to produce similar
parameters. This is not guaranteed but, just as an autoencoder will
cluster similar images in latent space, our network will tend to make
the SG parameters’ trajectories locally continuous in the light-field
texture, allowing for interpolation. Secondly, rather than training
all SG parameters in isolation, the CNN is shared among all texels.
Therefore, updating the network to perform better for one texel is
likely to improve the result for similar inputs. As will be shown in
Section 7, this improves convergence dramatically.

An overview of our network is provided in Figure 3. The input
is a 2D light-field image obtained as above, to allow for 2D con-
volution. We use the octahedron projection suggested by Meyer et
al., due to its simplicity [MSS*10]. Note that this projection does
not give equal projected area in all directions, which must be ac-
counted for during training. Each layer of the CNN consists of a
convolution, max pooling, and ReLU activation. The output of the
last layer is the input of a fully connected layer with N×M out-
puts, where N is the number of SGs used and M is the number of
parameters per SG. Next, the output image is generated by evalu-
ating the sum of gaussians defined by these parameters (Eq 1). The
predicted light-field image is compared to the input image and the
loss is propagated backward through the network. In the following
paragraphs we will go through each of these steps in detail.

Encoder Network. During one epoch of training, each light-field
image is passed through the CNN to produce the predicted SG pa-
rameters. Each CNN layer performs a convolution of 3× 3-pixel
spatial support and a ReLU activation, followed by 2×2 max pool-
ing to produce a new image of half the size. The first convolution
layer produces an image with 32 channels and each of the three sub-
sequent layers doubles the number of channels, resulting in a final
image of 8×8 feature vectors with 256 channels. This is then used
as input to a fully connected layer, without activation function, that
outputs an N×M matrix of real numbers, each taken to represent
one of the M parameters in one of the N SGs. The hyperparameters
of the network were found empirically, and kept as low as possible
without introducing a visual degradation of the result of our more
challenging scenes.

Loss Function. Once the constrained SG parameters are avail-
able, we can run a final kernel to reconstruct the predicted light-
field image. For each pixel and channel we evaluate the sum of
the predicted spherical gaussians using Eq 1. Since the input and
the predicted images represent radiance, which may be of high dy-
namic range, we minimize the L2 log loss function: (log(Tic +1)−
log(Pic + 1))2. This ensures that very high energy values (e.g., di-
rectly visible light-sources or specular highlights) are not given too
much importance compared to darker areas. The details of back-
propagating the gradient of the L2 log loss with respect to each
parameter are given in the Appendix A.

At this step we take into account that the projection used is not
area-preserving: to avoid some pixels having more weight, their
gradient contribution needs to be scaled relative to their unprojected
solid angle.
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(a) (b) (c) (d) (e)

Figure 5: Two of our scenes with: a) Only diffuse component from irradiance map, b) Reflections from preconvolved environment map, c)
Environment visibility using 16 SGs, d) Interreflections using 16 SGs. e) Is a path-traced reference.

Constraints. During backpropagation we enforce constraints on
the generated parameters by modifying their gradients depending
on the type of parameter: the axis of the SG are constrained to be
of unit length, and the amplitude and sharpness are constrained to
be positive. We will note that, while the axis could be expressed
using only two values, e.g. spherical coordinates, this would cause
discontinuities both for the training network and for the real-time
renderer when interpolating between directions. Also, while a nega-
tive amplitude is not necessarily erroneous, we found that enforcing
strictly positive amplitudes consistently improved our results.

Optimizations. There are two non-obvious optimizations we have
employed in the training. First, a pixel of the input image contains
the average incoming radiance from a small set of directions, rather
than a single direction. This must be accounted for when training,
otherwise the network can overtrain and produce unwanted arti-
facts. However, evaluating Eq 1 for several directions for each pixel
would be very costly so, instead, we randomly jitter the direction
used for evaluation and take a single sample, which we found to
be sufficient to avoid overtraining. Secondly, the path-traced input
images only have valuable information in the hemisphere centered
on the normal. Therefore, we do not let directions, v, below the
normal, n, contribute to the gradient at all.

5. Illumination Weighted Environment Visibility

Ignoring visibility, mirror reflections from an environment map can
be achieved with a single texture lookup. For glossy materials,
modern applications usually employ some kind of Torrance Spar-

row BRDF [TS92], making the light reflected to the camera from
the environment be:

Lo(ωo) =
∫

Ω

D(ωh)G(ωi,ωo)F(ωo)

4 |ωo ·n| |ωi ·n|
LE(ωi)VE(ωi) |ωi ·n|dωi,

(3)
where ωo is the direction to the camera, ωh is the half vector, Ω is
all directions on the hemisphere, D is the Microfacet Distribution
Function, G describes attenuation due to masking and shadowing,
F is the fresnel term, and n is the surface normal. The visibility
term, V , is often ignored. To achieve the look of a glossy mate-
rial, without sampling the environment map excessively, a common
trick is to preconvolve the D(ωh)LE(ωi) term for varying material
roughnesses into a 3D texture, assuming a surface facing ωo, and
then approximate the reflected light as:

Lo(ωo) =

(∫
Ω

D(ωh)LE(ωi)dωi

)
G(ωr,ωo)F(ωo)

4 |ωo ·n| |ωr ·n|
|ωr ·n| , (4)

where ωr is ωo reflected around the normal. This approximation is
increasingly incorrect for rougher materials, and for grazing view-
ing directions, but often looks plausible and is commonly used in
practice. Alternatively, a dominant reflection vector can be calcu-
lated by shifting the specular reflection vector towards the normal
at grazing angles [Seb14]

While our light-field texture could contain illumination from the
environment, that would be the same for every point in the scene so,
rather than spending SGs on reconstructing the environment map
at every texel, it is preferable to make use of the existing high-
resolution pre-convolved environment map. The most obvious ap-
proach might be to use a texture of sums of SGs to approximate
the visibility function, VE(ωi), but for rough materials this would

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



R. Currius & D. Dolonius & E. Sintorn & U. Assarsson / Spherical Gaussian Light-field Textures for Fast Precomputed Global Illumination
G

D
op

tim
iz

at
io

n
(n

ot
al

ig
ne

d)

G
D

op
tim

iz
at

io
n

(a
lig

ne
d

ax
es

)

C
on

ve
rg

en
ce

100 101 102 103 104Epoch

10−2

10−1

100

M
SE

CNN
GD (aligned)
EM (not aligned)
EM (aligned)

2000 epochs, 3h30m 2000 epochs, 3h30m 12000 epochs, 17h

Pa
th

tr
ac

ed
R

ef
er

en
ce

C
N

N
O

pt
im

iz
at

io
n

E
M

O
pt

im
iz

at
io

n
(a

lig
ne

d
ax

es
)

200 epochs, 45m 1000 epochs, 4h 200 epochs, 40m

Table 1: With no additional constraint, optimizing the SG parameters directly (EM or GD) causes disturbing artifacts between texels with
very different solutions. Adding a regularization constraint (aligned axes) can alleviate this problem, but dampens the system, causing it to
converge with a far from optimal result. By using a single CNN to produce all sets of SG parameters, local coherence between sets of SGs is
enforced and the final MSE, which compares the input lightfield image with its obtained SG representation, is much smaller. The insets show
the predicted light-field image for one texel (compare to the ground-truth light-field image in the inset of the pathtraced image).

be insufficient, as illumination is contributed from a larger cone of
directions.

Instead, we extend an idea recently published by Heitz et
al. [HHM18], where correct soft shadows are computed by com-
bining analytic area-light illumination and denoised, raytraced vis-
ibility. They suggest estimating the illumination-weighted shadow

WS(ωo) =

∫
Ω

R(ω)L(ω)V (ω)dω∫
Ω

R(ω)L(ω)dω
, (5)

where R is the cosine weighted BRDF, L is the incoming radiance
from the light-source and V is the visibility. This term is stochasti-
cally estimated and then multiplied by the exact analytical estima-
tion of the unshadowed illumination,

∫
Ω

R(ω)L(ω)dω.

In our case, we consider the incoming radiance from an envi-
ronment map, rather than an area light, and we have no means of
evaluating that analytically. We can, however, preconvolve the un-
occluded environment map:

U(ωo) =
∫

Ω

D(ωh)LE(ωi)dωi, (6)

and store the result in a 3D texture. We then precompute the
illumination-weighted environment visibility:

WE(ωo) =

∫
Ω

D(ωh)LE(ωi)V (ωi)dωi∫
Ω

D(ωh)LE(ωi)dωi
, (7)

for each light-field texel using a path tracer. This function we also
represent using SGs, trained as described above.

Finally, in the real-time shader, we can multiply the precon-
volved environment illumination with this estimation and, again,
approximate the remainder of the LTE using the perfect specular
reflection direction:

Lo(ωo) =U(ωo)WE(ωo)
G(ωr,ωo)F(ωo)

4 |ωo ·n| |ωr ·n|
|ωr ·n| (8)

As shown in Table 3, this way we can achieve plausible, high-
resolution, glossy reflections from an environment map with vis-
ibility at the small cost of one environment lookup and evaluat-
ing a sum of spherical gaussians. This technique can be used on
its own or in combination with the method described in the pre-
vious section. Note that while we compute the full, three-channel,
illumination-weighted environment visibility, it would also in many
cases be sufficient to use a monochrome result, reducing the
amount of memory traffic.

6. Real-time Algorithm
To render the images shown in this paper we have used a deferred
shading pipeline and applied the lighting from our light-field tex-
tures and environment visibility in the global lighting pass.

The light-field and environment visibility textures containing the
gaussian parameters are read from disk and stored in texture arrays.
Although our light-field texture could be used for diffuse reflec-
tions as well, we instead use the existing precomputed irradiance
light map, and use the light-field texture only for glossy reflections.
All illumination in the scenes comes from emissive surfaces or the
environment.
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The steps to apply the illumination from the light-field texture,
for each pixel in the fragment shader, are:

1. Fetch position, normal, uv-coordinates, and material properties
from the G-buffer.

2. Look up irradiance in the precomputed texture and calculate dif-
fuse reflection.

3. Calculate the (anisotropic) SG that represents the D(ωh) term
from the material properties.

4. Fetch one SG at a time from the light-field texture (7 parameters,
i.e., two texture lookups per SG) and convolve it with D.

5. Calculate the other BRDF terms F, G, and the dot products in
the divisor for the perfect specular direction.

6. Multiply the obtained terms to obtain the glossily reflected radi-
ance for this SG and accumulate it to the total glossy reflected
radiance from the light-field texture.

To evaluate and convolve the spherical gaussians, we follow Pet-
tineo [Pet16], the relevant definitions from which have been in-
cluded in Appendix B, and we refer the reader to the paper by Wang
et al. [WRG*09] for a full derivation.

The steps to render the environment map reflections using the
illumination-weighted environment visibility method are:

1. Fetch position, normal, uv-coordinates, and material proper-
ties from the G-buffer (re-use the information already obtained
when applying light-field texture).

2. Based on material roughness, look up U(ωo) from the precon-
volved environment map.

3. Fetch each SG (two texture lookups per SG) from the visibility
factor texture and evaluate it in the reflected direction. Accumu-
late the evaluated value to obtain the visibility factor WE(ωo)
for that pixel.

4. Calculate glossily reflected radiance from the environment ac-
cording to Eq 8.

7. Results

The evaluation of our method was performed on an Intel core i7-
8700 with an RTX 2080 graphics card. The training is implemented
using nVidia’s CUDA and cuDNN, and the real-time renderer is
implemented in OpenGL. All scenes are lit only by our proposed
method, either from emitting surfaces or environment maps. Direct
lighting can be orthogonally added with any standard method.

Direct optimization of SG parameters. We primarily compare
our suggested method of using a CNN to generate the SG param-
eters to a direct optimization of the parameters using Gradient De-
scent (GD). We have chosen a Gradient Descent solver, as that lets
us train using the same initialization, loss function, and parameter
gradients, allowing us to evaluate the benefit of using a CNN in
isolation. We have additionally performed one comparison with di-
rectly optimizing the gaussian parameters using Expectation Maxi-
mization (EM) [HSRG07; HZE*19], by normalizing the amplitude
of the SGs so the integral over the sphere adds up to 1, letting us
treat the sum of them as a von Mises-Fisher mixture. We have ob-
served that EM can converge much faster and to a better MSE result
than GD (see Table 1), even though it’s goal is not to optimize for
MSE.

As expected, adjacent sets of SG parameters can not be smoothly
interpolated if the parameters are optimized in isolation. To
remedy this, we add the regularization constraint suggested by
Green et al. [GKMD06] to GD optimization, and an alignment
term [HSRG07] to EM. In both algorithms, the axes of the SGs are
pushed towards the average of adjacent texels’ axes. Introducing
a constraint alleviates the problems slightly but, when converged,
the reflections still show strong artifacts along lines where one SG
changes too quickly. If we increase the weight of the constraint fur-
ther, it dampens the system and the training converges at a much
higher MSE. The result is very blurry reflections.

In contrast, when training a CNN to generate the parameters, co-
herence between nearby sets of gaussians is maintained indirectly,
still allowing parameters to change quickly when doing so does not
affect the MSE. This leads to a much better MSE for the converged
result and the images obtained when using the SGs for reflection
are much closer to the pathtraced reference.
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Direct SGD (64x64)
Direct SGD (128x128)
EM (128x128)
EM (256x256)
Our Method (64x64)
Our Method (128x128)
Our Method (256x256)

Figure 6: Convergence for a simple scene with light-field textures
of varying size.

Using a CNN to produce the SG parameters also scales very well
with the resolution of the light-field texture, as illustrated in Fig-
ure 6. Here, we can see that, while each epoch of training will take
time proportional to the number of input light-field images, the time
to convergence is essentially unaffected. Using our method, train-
ing is converged after approximately three hours, regardless of the
light-field texture resolution. With a direct optimization of param-
eters (here without enforcing coherence between sets of SGs), the
time to convergence is proportional to the number of input images.
The average MSE of the final predicted light-field image is also
much better with our method and, interestingly, improves with in-
creased resolution.

Quality. Table 2 shows a comparison of our method for render-
ing images with precomputed light fields, using varying numbers
of SGs per texel, and a path-traced reference. The scene is a simple
test scene containing objects with a material of increasing rough-
ness (0.2, 0.3, 0.4, and 0.5, GGX BRDF [WMLT07]) from left to
right. The scene is illuminated by a number of emitting arcs that
can be seen in the background. In the right column we see the light
field as it was reconstructed for one of the pixels. The resolution of
the light-field texture is rather small (256× 256), to show that the
gaussians can be interpolated with very plausible results.
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Rendered image: Reconstructed light field
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Table 2: Quality of reflections compared to a path-traced reference
for varying numbers of SGs per texel. In the right column is the
reconstructed light field for one pixel.

For the three rightmost objects (roughness >= 0.3), the recon-
structed light-fields are sufficient to produce an image that matches
the path-traced reference quite well, even with 16 SGs. At lower
roughness levels, the remaining errors become more obvious and
on the clear, flat plane the reflections might not be acceptable even

with 64 SGs. On a curved object, or a textured material (see, e.g.,
Figure 1b), the quality of highly glossy reflections can be quite suf-
ficient with as few as 16 SGs. Looking at the leftmost plane, We
can identify two main sources of error. First, since the reconstructed
light-field image consists only of a sum of gaussians, straight, hard
lines are difficult to reconstruct, leading to somewhat smudgy re-
flections. Secondly, in some places we can see what looks like folds
in the flat plane. These artifacts appear when a SG changes direc-
tion quickly over a few pixels, which the network might deem nec-
essary to reduce the overall error.

The two bottom rows show the results when using fixed direc-
tions as in previous work [Pet16]. Here, even the most rough ma-
terial is clearly not comparable to the path-traced reference, and
the errors are even more visible in motion, as can be seen in the
accompanying video. This is not surprising when looking at the
corresponding light-field image. The available SGs are necessarily
spread uniformly over the sphere and the majority of them do not
contribute at all.

In Table 3, we show a similar scene, but illuminated by an en-
vironment map, and using our precomputed illumination-weighted
environment visibility method. While reflections are not quite as
sharp as in the path-traced reference, our method works as a very
convincing visibility estimator for any direction even with this quite
challenging, high frequency, HDR environment map. Note in the
right column that the reconstructed illumination weighted environ-
ment visibility is not a simple visibility map, but an attenuation
factor for the preconvolved environment map.
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Table 3: Quality of illumination weighted environment visibility
compared to a path-traced reference for varying numbers of SGs
per texel. In the right column is the reconstructed visibility for one
pixel.
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Figure 7: Convergence of the networks trained for Tables 2 and 3,
and for Figure 1.

Convergence. In Figures 7a and 7b, we show the loss as a func-
tion of the number of epochs the network has been trained. In all
of our tests, the MSE improves only very slightly after 128 epochs,
and in general, a good result is obtained after 30 epochs. In the first
graph, each epoch took approximately one minute to train, and in
Figure 7b, which has a larger light-field texture (512× 512), each
epoch took approximately five minutes. In Figure 7a, we also show
the convergence when training for fixed directions. Here, we could
reach convergence by directly optimizing the parameters with gra-
dient descent.
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Changed Ball: trained
Changed Ball: random
Room: trained
Room: random

Figure 8: Convergence when starting with a pre-trained network.
The network is initialized with the values obtained from training for
Figure 1b and then trained for two different scenes. The Changed
Ball scene is very similar to the one the network is trained for, and
the Room scene is the scene shown in 1a.

To evaluate how general the trained network is, we have exper-
imented with initializing the network weights with the converged
weights for a different scene. The results are shown in Figure 8. We
trained the scene shown in Figure 1b to obtain an initial network
state and then trained two different scenes. One of these scenes
was obtained by moving objects around in the original scene, and
the other is the scene shown in Figure 1a. Although the MSE ob-
tained after the first few epochs was slightly better than for random
initialization, we did not find that a pre-trained network improved
convergence in either case. We believe the old input images, al-
though similar, do not contain sufficiently similar features for the
network to generalize.
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Figure 9: The time taken for our deferred shading pass, including
evaluation of indirect illumination from light-field textures, for each
frame of the accompanying videos.

Performance. Finally, in Figure 9, we show the time taken to ren-
der each frame of the accompanying videos. All images are ren-
dered at a resolution of 1920× 1080, and the times shown are
the time taken for the Deferred Shading pass, which evaluates all
SGs (the total frametime includes an additional 0.2ms for rendering
the GBuffer). Not unexpectedly, the performance is mostly propor-
tional to the number of SGs evaluated. Since evaluating and con-
volving spherical gaussians is very cheap, the costly part of our
approach is the number of texture fetches required. That memory is
the bottleneck is further evidenced by the fact that performance im-
proves significantly when we use 16 bit floating point values rather
than 32 bit to describe our SG parameters. Since using 16 bit floats
has no visible impact, that is what we have used in all meassure-
ments in this paper. We also attempted to further reduce the size of
our light-field textures by converting them to 8 bit values. This had
a significant impact on quality, however, and did not improve per-
formance much. To reduce the memory footprint further, it might
instead be possible to use any of the compressed texture formats
available in hardware, but we have not yet explored this further.

8. Conclusion and Future Work

We have shown that the quality of light-field textures, represented
by Spherical Gaussians, can be greatly increased by allowing for ar-
bitrary axes. We suggest training a Convolutional Neural Network
to produce appropriate parameters for these SGs, rather than opti-
mizing the spherical gaussians’ parameters directly, and show that
good results are obtained, for complex scenes, within a few hours
of training. Additionally, we suggest a novel method for approx-
imating environment visibility, by precomputing the illumination
weighted environment visibility, and show that the same network
can be used to create the SGs describing this function. Our real-
time indirect illumination algorithm is extremely fast on modern
high-end hardware and should perform well within real-time even
on much older hardware or even portable devices.

Generating one of the converged ground-truth images shown in
Figure 5e takes about 5 minutes on our RTX 2080 card, with an
Optix renderer. A noisy, but recognizable, picture can be rendered
within seconds. By significantly simplifying the allowed types of
light-transport and scene-geometry, and making heavy use of tem-
poral denoising filters, a pathtraced image can be obtained at in-
teractive framerates (see e.g, QuakeRTX). For high-quality scenes
and arbitrary lighting, fully dynamic solutions are still not avail-
able, however. Our method admittedly requires hours of baking and
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training as a preprocess (around 8 hours of baking and 6 of train-
ing), but allows for good quality global-illumination images for a
time budget of 1-2 milliseconds per frame (see Figure 9).

In this work, we have concentrated on storing the SG parameters
in two-dimensional textures, but another promising area would be
to approximate densely placed light probes, which would allow dy-
namic objects to reflect the static scene. Although our examples do
not require much memory for the light-field textures, a larger scene
might require much higher resolution and then the memory cost
of our method would naturally grow. Therefore, another interesting
area of future work is to further compress the light-field data. This
could be achieved as simply as using hardware compression for the
textures, or it might be possible to take advantage of the coherency
between texels in the light-field texture.
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Appendix A: Partial Derivatives for back propagation

We use the L2 log loss function when training, defined as follows:

L(P) = (log(T +1)− log(P+1))2, (9)

where P is the predicted value for a pixel in a light-field image,
and T is the target value. The gradient of the L2 log loss function
with respect to this pixel is:

dL(P)
dP

=−2
log(1+T )− log(1+P)

1+P
(10)

However, we need to backpropagate the gradient of the L2 loss
with respect to each parameter. The chain rule gives us that the
gradient of a specific parameter pk is:

dL
dpk

=
1

IC ∑
i,c

dPic

dpk

dL(Pic)

dPic
, (11)

where I is the total number of pixels and C is the number of chan-
nels. Hence, for each pixel and channel, we must find the partial
derivative of Eq 1 with respect to each of the parameters and add
that contribution to the parameter’s gradient. For the different pa-
rameter types, these derivatives are:

dPic

dµ jc
= eλ j(vi·p j−1) (12)

dPic

dλ j
= µ jceλ j(vi·p j−1)(vi ·p j−1) (13)

dPic

dx
= µ jceλ j(vi·p j−1)

λ jx (identically for y and z) (14)

Appendix B: BRDF as Spherical Gaussians and SG Convolution

In the real-time rendering of the reflection SGs we treat the BRDF
function as a spherical gaussian to be able to convolve it with the
spherical gaussians describing the incoming light field for a texel.
These formulas have been adapted from [Pet16], where an in-depth
explanation on how they are derived is also given.

We use the Cook-Torrance BRDF:

f (ωi,ωo) =
F(ωo,ωh)G(ωi,ωo,ωh)D(ωh)

4(n ·ωi)(n ·ωo)
, (15)

and the following definition of a Spherical Gaussian:

G(v;µ,λ,a) = aeλ(µ·v−1). (16)

The SG approximation to the D term that we use is defined as
follows:

D(ωh) = e−(arccos(ωh·n)/r)2
≈ G(ωh;n, 2

r2 ,
1

πr2 ), (17)

where r is the roughness of the material.

This gaussian is defined in the half-vector domain, and we need
to convert it to the same domain as the SG it will be convolved
with. To better represent the BRDF from directions approaching the
surface plane we use an anisotropic transformation of the previous
lobe in this step, as suggested by [Pet16]. For that, the following
transformations are used:

µw = 2(ωo ·µd)µd−ωo

λ
x
w =

λd
8 max(µd ·ωo,0.0001)2

λ
y
w =

λd
8

aw = ad

(18)

This anisotropic spherical gaussian can be evaluated with:

G(v;[µx,µy,µz], [λx,λy],a) = (19)

= a ·max(v ·µz,0)e−λx(v·µx)−λy(v·µy) (20)

Where µx and µy are two orthogonal vectors that form a basis
with µz = µw. Any will do, and they need to be transformed together
with µz when applying equation 18.

We can convolve two spherical gaussians G1(v) and G2(v) as
follows:

∫
Ω

G1(v)G2(v)dv =
4πa1a2

eλm

sinh(||µm||)
||µm||

(21)

Where

λm = λ1 +λ2 (22)

µm =
λ1µ1 +λ2µ2

λ1 +λ2
(23)

To convolve each isotropic SG from the light-field texture with
the anisotropic SG approximating the D term, we use:

∫
Ω

G1(v;µ1,λ1,a1) ·GA
2 (v;µ2, [λ

x
2,λ

y
2],a2)dv =

=
a1a2π√

( λ1
2 +λx

2)(
λ1
2 +λ

y
2)

max(µz
2 ·v)e

−(λx
2(v·µ

x
2)

2+λ
y
2(v·µ

y
2)

2). (24)

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.


